SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR

(AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road-517583

 OUESTION BANK(DESCRIPTIVE)

 Subject with Code: R Programming for Data Science(20CS1104)

Year & Sem: III & II **Regulation:** R20

Course & Branch: B.Tech & CAD

UNIT – I

INTRODUCTION TO R PROGRAMMING

1		What is R? Briefly describe the history and development of the R programming language.	[L2][CO1]	[12M]
2	a)	Explain the different ways to run R code, including using the R console, R scripts, and R Markdown.	[L2][CO1]	[6M]
	b)	Classify the advantages and disadvantages of each method for running R code.	[L4][CO1]	[6M]
3	a)	What are R sessions, and how do you manage them effectively?	[L2][CO1]	[6M]
	b)	Illustrate the concept of functions in R with a program, and how to define and use them?	[L3][CO1]	[6M]
4	a)	Demonstrate basic math operations with program, such as addition, subtraction, multiplication, and division.	[L2][CO1]	[6M]
	b)	Categorize the order of operations in R and how to use parentheses to control the evaluation of expressions with an example program.	[L4][CO1]	[6M]
5	a)	Illustrate how to declare and assign values to variables in R with a program?	[L3][CO1]	[6M]
	b)	Discuss the different naming conventions and rules for variable naming, each with example in R.	[L2][CO1]	[6M]
	a)	Classify different data types in R with example.	[L4][CO1]	[6M]
6	b)	Conclude how to check the data type of a variable and convert between different data types.	[L4][CO1]	[6M]
7		Classify different data structures in R with examples.	[L4][CO1]	[12M]
8	a)	i)Create a program for manipulating data frames in R. ii)Create a program for manipulating lists in R.	[L6][CO1]	[6M]
	b)	Determine Vector and its functions with examples.	[L3][CO1]	[6M]
0	a)	Differentiate between matrices and data frames?	[L4][CO1]	[6M]
9	b)	Create a program for 2x3 matrix and accessing its second row?	[L6][CO1]	[6M]
		Discriminate the following data structures with syntax and example.		
	a)	i)Arrays	[L5][CO1]	[6M]
10		11)Matrices		
		these data structures		
	b)	i)Lists	[L2][CO1]	[6M]
		ii)Data Frames		

UNIT – II

R PROGRAMMING STRUCTURES, OPERATORS AND FUNCTIONS

1		Illustrate different conditional statements in R with appropriate syntax and examples.	[L3][CO2]	[12M]
2	a)	Explain working of switch case in R with an example program.	[L2][CO2]	[6M]
	b)	Develop a R program to check for leap year or not.	[L6][CO2]	[6M]
	a)	Illustrate for loop in R and demonstrate its usage.	[L3][CO2]	[6M]
3	b)	Explain the while loop and create a program for finding the sum of	[L6][CO2]	[6M]
		natural numbers.	[][]	[]
	a)	Describe how to iterate over a list or a data frame using a loop.	[L2][CO2]	[6M]
		Explain the lapply and sapply functions and their use cases and create a		
4	b)	program that uses lapply to apply a function to each element of a list and	[L6][CO2]	[6M]
		returns a new list.		
	a)	Compare the functions next and break with example program.	[L5][CO2]	[6M]
5	• `	Explain the concept of nested if-else statements and prepare an example		[6 M]
	D)	that uses the ifelse() function to create a new vector based on conditions.		
	a)	Classify various types of operators in R and write about any two		[6 M]
-		operators.	[L4][CU2]	
6	b)	Write a program that demonstrates the use of various arithmetic and		[6M]
		Boolean operators.		
	a)	Explain how to set default values for function arguments in R.	[L2][CO2]	[6M]
		Justify the importance of default values and their use cases and create a		
7	b)	function that takes two arguments with default values and returns their	[6][CO2]	[6M]
		sum.		
	a)	Describe the return() function in R and its purpose.	[L2][CO2]	[6M]
8	b)	Illustrate the concept of implicit return in R functions.	[L3][CO2]	[6M]
	,	Discuss the factors to consider when deciding whether to use an explicit		
	a)	return () statement.		[6]/1]
9	b)	Explain how to return complex objects, such as lists or data frames, from	11 11(COA)	100
		R functions.		[6]/1]
	a)	Illustrate the concept of functions being first-class citizens in R.	[L3][CO2]	[6M]
10		Discuss the absence of pointers in R. create a recursive function that		
10	b)	calculates the nth Fibonacci number.	[L6][CO2]	[6M]

$\mathbf{UNIT}-\mathbf{III}$

MATH FUNCTIONS, SIMULATION IN R AND EXTENDED EXAMPLE

CALCULATING PROBABILITY

1		Identify different built-in mathematical functions in R with for example for each	[L3][CO3]	[12M]
2	a)	Categorize the different methods for calculating minimum, maximum, and cumulative sum statistics on vectors in R.	[L4][CO3]	[6M]
	b)	Differentiate between cumulative sums and products in the context of numerical analysis within R.	[L4][CO3]	[6M]
	a)	Create a R program for calculating the probability.	[L6][CO3]	[6M]
3	b)	Explain following functions with example i)dnorm ii)qchisq iii)qbinom iv)rnorm	[L2][CO3]	[6M]
4		Evaluate the capabilities of R for performing basic calculus operations (e.g., differentiation, integration).	[L5][CO3]	[12M]
5		Explain efficient techniques for sorting data vectors in R based on specific criteria .	[L2][CO3]	[12M]
(a)	Classify fundamental linear algebra operations on vectors and matrices in R, including addition, subtraction, and scalar multiplication .	[L4][CO3]	[6M]
0	b)	Prioritize an example (excluding vector cross product) of how vector operations are used in linear algebra applications within R.	[L4][CO3]	[6M]
7		Demonstrate the vector cross product and its applications in R.	[L2][CO3]	[12M]
8	a)	Distinguish Markov chains and their significance in modeling probabilistic systems.	[L4][CO3]	[6M]
	b)	Illustrate how to import data in R programming.	[L3][CO3]	[6M]
9	a)	Classify set operations (union, intersection, difference) and their implementation for data manipulation in R.	[L4][CO3]	[6M]
	b)	Explain reading and writing files in R.	[L2][CO3]	[6M]
	a)	What is the purpose of getwd() and setwd() functions in R	[L4][CO3]	[6M]
10		Explain the purpose of the following functions in R:		
10	b)	1. read.csv() ii write csv()	[L2][CO3]	[6M]

iii. read.xlsx()

UNIT-4

GRAPHICS

	a)	Describe the role of the plot() function in R base graphics.	[L2][CO4]	[6M]
1	b)	What are the essential components required to create a graph using the plot() function?	[L6][CO4]	[6M]
2	a)	How do you customize the appearance of a graph using the plot() function in R ?	[L2][CO4]	[6M]
	b)	Illustrate the concept of data visualization and its importance in data analysis	[L3][CO4]	[6M]
	a)	Discuss the advantages of using R base graphics for creating graphs.	[L2][CO4]	[6M]
3	b)	Categorize some common types of graphs that can be created using the plot() function.	[L4][CO4]	[6M]
4	a)	How do you add labels to the axes of a graph created with the plot() function?	[L2][CO4]	[6M]
	b)	Describe the process of changing the color and line type of a plot in R.	[L2][CO4]	[6M]
_	a)	Explain the significance of customizing the title of a graph in data visualization.	[L2][CO4]	[6M]
3	b)	Assess the use of the main parameter in the plot() function for adding a title to a graph.	[L5][CO4]	[6M]
	a)	Illustrate Data visualization with R and ggplot2.	[L3][CO4]	[6M]
6	b)	Identify the different options available for adjusting the size and aspect ratio of a graph in R.	[L3][CO4]	[6M]
7	a)	Outline the process of saving a graph created with the plot() function to a file in R.	[L2][CO4]	[6M]
	b)	Discover the purpose of the file parameter in the plot() function for saving graphs.	[L3][CO4]	[6M]
	a)	List and explain about different R – Charts and Graphs in R.	[L2][CO4]	[6M]
8	b)	Discriminate the importance of choosing an appropriate file format when saving a graph in R.	[L5][CO4]	[6M]
	a)	How do you specify the dimensions and resolution of a saved graph in R?	[L2][CO4]	[6M]
9	b)	Describe the process of exporting a graph to different file formats using the plot() function.	[L2][CO4]	[6M]
10		Develop a code to demonstrate various charts using tree datasets for the following a. Histogram	[L3][CO4]	[12M]
		b. Scatter plotc. Box plotd. Line chart		- 1

UNIT-5

PROBABILITY DISTRIBUTIONS AND LINEAR REGRESSION

1	a)	Classify the characteristics of the normal distribution and provide an example of its application in real-world data analysis	[L4][CO5]	[6M]
	b)	Identify the properties of the binomial distribution and give an example of its use	[L3][CO5]	[6M]
2	a)	What are the key features of the Poisson distribution, and when is it commonly used	[L1][CO5]	[3 M]
4	b)	Discuss about standard deviation with example.	[L2][CO5]	[7M]
	a)	Determine basic statistics and explain their importance in data analysis?	[L3][CO5]	[6M]
3	b)	Illustrate the concepts of correlation and covariance and explain how they are calculated.	[L3][CO5]	[6M]
	a)	Analyze the purpose of T-tests in statistical analysis and provide examples of when they are used.	[L4][CO5]	[6M]
4	b)	Distinguish the use of ANOVA (Analysis of Variance) in comparing means across multiple groups.	[L5][CO5]	[6M]
5	a)	Examine the concept of linear models and give an example of simple linear regression.	[L4][CO5]	[6M]
•	b)	Describe the process of multiple regression and its applications.	[L2][CO5]	[6M]
6	a)	Discuss generalized linear models and their advantages over traditional linear models.	[L6][CO5]	[6M]
Ū	b)	Explain the logistic regression model and provide an example of its use.	[L2][CO5]	[6M]
	ŗ	Apply the regression models:	[L3][CO5]	[12M]
		height 176 154 138 196 132 176 181 169 150 175		
		bodymass 82 49 53 112 47 69 77 71 62 78		

For the above data:

7

- •Perform linear regression and display the result.
 - •Create a Regression plot with the following specifications.
 - •Display the title of the graph as "Height Vs. Bodymass"

•Set the color of the plot as blue

- a) Assess the Poisson regression model and its application in analyzing count [L5][CO6] [6M] data.
 b) Summarize advantages of using Random Forest. [L2][CO6] [6M]
 - a) Explain the structure of decision tree. [L2][CO6] [6M]
- 9 (b) Categorize the principles behind decision trees and their application in [L4][CO6] [6M] random forests.
- a) Discuss the advantages of random forests over traditional statistical [L2][CO6] [6M] models.
 - b) Give examples of real-world scenarios where random forests are used for [L2][CO6] [6M] predictive modeling.

Prepared by: A SATHISH